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Abstract
From the quantum mechanical viewpoint we derive the dielectric function of
an electron plasma system in the presence of a radiation field. By using time-
dependent wavefunctions for plasma electrons under the external ac field, we
calculate the charge density fluctuation of the electronic system under a weak
probing potential and the spectrum of the collective excitation is calculated
and found to be strongly dependent upon the amplitude and frequency of
the radiation field. We show, in the classical limit, that the reduction of the
collective excitation frequency under the radiation field can be associated with
the suppression of the plasma high-frequency reactive electrical conductivity.
The result is consistent with the recent experimental observation of increased
high-frequency mobility in two-dimensional electron gases under a radiation
field.

PACS numbers: 52.40.Db, 52.25.Mq

1. Introduction

Owing to the development of high-power radiation sources, there has been increasing interest in
the study of the interaction of intense radiation fields with plasmas. Several phenomena were
investigated amongst other, plasma heating via inverse bremsstrahlung regarding radiation
fusion experiments [1–11] and plasma wave instabilities [12]. Another interesting aspect
concerning the radiation–plasma interaction and the one which pertains to us here is the
possibility of a radiation field control of the plasma dielectric properties. As we know,
the investigation of the dielectric function of an electron gas has played an important role
in modern electronics. The dielectric function measures the strength of a gas of electrons
interacting via their long-range force such as Coulomb potential [13, 14]. Therefore, it is of

1751-8113/07/5015131+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK 15131

http://dx.doi.org/10.1088/1751-8113/40/50/015
mailto:fonseca@ntnu.no
http://stacks.iop.org/JPhysA/40/15131


15132 A F Guimarães et al

paramount importance to study the elementary electronic excitation from a plasma electron
gas. For instance, the dielectric response of a plasma to electromagnetic waves (e.g. higher
modes of incident microwaves) and a radio-frequency dielectric response for a Tokamak have
been investigated [15, 16]. Numerical experiments were carried out for the discharge in argon
at atmospheric pressure and the characteristics of the discharge plasma were found to be
dependent upon the applied electromagnetic field mode, power and frequency.

Aside from the experimental focus on plasma heating and confinement, it is of value to
examine how an external radiation-field affects such a fundamental quantity as the dielectric
function and its consequence on the plasma high-frequency electrical conductivity σ(ω) which
is our main motivation in the current study.

Although the examples of applications of our calculation mention plasma conditions
where quantum effects seem to be completely negligible (since the Fermi energy is much
less than the plasma temperature), we will tackle the problem of the electron gas in a plasma
under the radiation field using the quantum mechanical approach instead of the usual classical
approach which is simpler. However, in the present case the quantum mechanical approach
seems to be more suitable than the classical one because it enables us to perform canonical
transformation in order to solve the time-dependent electron motion in the radiation field. As
we know, in the absence of nonlinear effects, the classical permittivity of a plasma and the
dispersion relation for electrostatic and electromagnetic modes are well known, and the modes
are uncoupled. By making use of the quantum mechanical formalism the ‘radiation field’
effects enter the problem straightforward from the outset through the electron time-dependent
Schrödinger equation. The obtained time-dependent electron wavefunction is then used to
calculate the electronic state in a local potential which permits us to derive the dielectric
response of the system in the classical limit. This kind of approach has been employed to
plasma systems as seen elsewhere [13, 14].

2. Formalism

In what follows, we set up the formalism for the dielectric response function of a weakly
ionized plasma in the presence of an external electromagnetic field (EM) from which the
modes of the collective excitation of the system are determined. Then by making use of the
usual relationship between the dielectric and the conductivity functions we provide a relation
of the high-frequency electrical conductivity and field-dependent collective excitations.

We assume here the plasma to be the one in which the out of equilibrium electron
distribution function corresponding to a small anisotropy and spatial inhomogeneity of
electrons deviate only slightly from the equilibrium distribution function (homogeneous and
isotropic). As for the external field, if the distance over which the amplitude of field changes
is large in comparison with the size of the charges placed in the plasma, the initial Debye
screening radius (rD) and the amplitude of the electron oscillations in the wave field, we can use
dipole approximation. Classically, the electromagnetic wave can propagate in a plasma only
if its frequency ω is higher than the plasma frequency �pe. For ω < �pe wave penetration into
the plasma only occurs provided the length of the sample is much smaller than the penetration
depth of the field into the sample, namely δ = c

(
�2

pe − ω2
)−1/2

. Also, for simplicity and
convenience we limit our calculation to field amplitudes in the interval of 0.1–10 V cm−1

(non-intense field regime) which are far below those EM fields which accelerate the electrons
to the relativistic regime. Relativistic corrections only matter for longer wavelength radiation
fields at foreseeable intensities as high as 1016 W cm−2. Nevertheless, these effects are
insignificant for wavelengths smaller than 10 µm [17].
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To begin with, let us consider an electron of the plasma under a radiation field. We choose
the EM field to be such that its electric field is E(t) = Eêx cos(ωt), where E and ω are the field
amplitude and frequency, respectively. For notational convenience, we use h̄ = c = V = 1,
with c being the speed of light and V the normalization volume. In the absence of a radiation
field, the Schrödinger equation for a single plasma electron is given by

�p2

2me
ψ(�r, t) = i

∂ψ(�r, t)
∂t

, (1)

and the wavefunction of the electron is simply a plane wave ψ(�r, t) = ei�k·�re−iε�k t , where
ε�k = �k2/2me and me is the electron mass.

On the other hand, in the presence of an intense radiation field the electrons are strongly
coupled to the electromagnetic field. So the vector potential is given in the form

�A(t) = E

ω
êx sin(ωt). (2)

In this case, the time-dependent Schrödinger equation is given by

i
∂�(�r, t)

∂t
= H�(�r, t), (3)

where H = (1/2me)[ �p − e �A(t)]2 and e is the elementary charge. It can be shown that (1) and
(3) are related to each other by a simple unitary transformation [6–8]

U

[
i
∂

∂t
− �p2

2me

]
U † = i

∂

∂t
− 1

2me
[ �p − e �A(t)]2 (4)

where

U = exp(−i2γ1ωt) exp{iγ0kx[1 − cos(ωt)]} exp[iγ1 sin(2ωt)] (5)

and the wavefunction can be written as

��k(�r, t) = Ue−iε�k t ei�k·�r , (6)

where γ0 = eE/meω
2 and γ1 = e2E2/8meω

3. We now employ this time-dependent
wavefunction to calculate the electronic state in a local potential (to be determined self-
consistently) and to derive the dielectric properties of system. The zeroth-order wavefunction
is given by

�0
�k = exp[iF(ω, t)] exp{iγ0kx[1 − cos(ωt)]} ei�k·�r eiε�k t . (7)

Here

F(ω, t) = 2γ1ωt + γ1 sin(2ωt) (8)

and (7) forms an orthonormal set,
〈
�0

�k
∣∣�0

�k′
〉 = δ�k, �k′ .

In this case, there is no charge fluctuation even in the presence of the radiation field, i.e.

ρ
(0)

�k = −e
∣∣�0

�k
∣∣2 = −e. (9)

The wavefunction of an electron under a local potential can be expanded using the above
orthonormal set as

�(�r, t) =
∑

�k
a�k(t) exp[iF(ω, t)] exp{iγ0kx[1 − cos(ωt)]} ei�k·�r eiε�k t , (10)

where the coefficient a�k(t) will be determined through the time-dependent perturbation
method.
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We now consider a local potential φ(�r, t) which can be written as

φ(�r, t) =
∫

d�q
∫

d� ei�q·�rei�tφ(�q,�) + c.c., (11)

where c.c. denotes the complex conjugate of the preceding term. We assume that the local
potential is weak and use the time-dependent perturbation [18] to calculate the change of
electronic state. The time-dependent Schrödinger equation is now given by

i
∂�

∂t
= (H − eφ)ψ, (12)

where H is given by (3). Upon using (10), we obtain the first-order equation

i
∂a �k′

∂t
= −e exp{iγ0(kx − k′

x)[1 − cos (ωt)]} e−i(ε �k′ −ε�k)t
∫

d�r e−i �k′ ·�rφ(�r, t) ei�k·�r . (13)

Substituting the Fourier expansion given by (11) and making use of the generating function
of the Bessel function, namely

exp(iα cos x) =
∑
m

imJm(α) eimx, (14)

we obtain

a�k+�q(t) = (ie) e−iγ0qx

∑
m,�

imJm(qxγ0)φ(�q,�)

∫ t

−∞
dt ′ exp[−i(ε�k+�q − ε�k − � − mω)t ′]. (15)

The wavefunction up to first order is now given as

��k(�r, t) = �0
�k (�r, t) +

∑
�q

a�k+�q(t)�
0
�k+�q(�r, t). (16)

Hence, the fluctuation of the charge distribution, namely

ρ�k(�r, t) = −e[�∗
�k (�r, t)��k(�r, t) − 1], (17)

can be calculated. Neglecting high-order terms in φ, we obtain

ρ�k(�r, t) = −e2
∑
�q,�

∑
m

imφ(�q,�)Jm(qxγ0)

×
{

exp[−iγ0qx cos(ωt)] exp[−i(� + mω)t]

ε�k+�q − ε�k − � − mω − iη
ei�q·�r

+
(−1)m exp[iγ0qx cos(ωt)] exp[i(� + mω)t]

ε�k+�q − ε�k − � − mω − iη
e−i�q·�r

}
. (18)

The contribution to the induced charge density due to the complex conjugate part of the
local potential can be calculated with the same method. After some rearrangements we obtain

ρ�k(�r, t) = −e2
∑
�q,�

ei�q·�rφ(�q,�) exp [−iγ0qx cos (ωt)] e−i�t
∑
m

imJm(qxγ0) e−imωt

×
(

1

ε�k+�q − ε�k − � − mω − iη
+

1

ε�k+�q − ε�k + � + mω + iη

)
+ c.c.. (19)

And the total density fluctuation of the system can be written as

ρ(�r, t) =
∑

�k
f�kρ�k(�r, t), (20)
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where

f�k(T ,Eγ ) = n0

(
1

2πmekBT

)3/2

exp

(
−

�k2

2mekBT
− Eγ

kBT

)
(21)

is the Maxwellian distribution function [19]. Here Eγ = 2γ1ω is the energy of the radiation
field, n0 is the electron gas density, kB is the Boltzmann constant and T is the plasma
temperature. The assumption of the Maxwellian distribution function f�k(T ,Eγ ) is consistent
with the fact that provided the electrons kick frequently other electrons in order to be in
thermal equilibrium, they also get energy from the external EM source. On this we would like
to strengthen our argument concerning the distribution function as follows. In the presence of a
radiation field the electron velocity is shifted by a factor �v−�vE sin(ωt), where �vE = e �E/meω,
and the electron distribution function is given by

f (ω,E) = n0

(
1

2π

)3/2

vth
3 exp

[
− 1

2v2
th

(�v − �vE sin ωt)2

]
, (22)

with vth = √
kBT/me being the thermal velocity. Since we consider the high-frequency

regime of EM field for which ωt > 1 (t is the electron relaxation time) the term in f (ω,E)

involves a factor exp(sin ωt) (after the binomial form has been developed). This factor can
be transformed into a series of Bessel functions of order s (s = 0, 1, 2, . . .). For ωt > 1 it
oscillates very rapidly in time and the only term that survives in the series is the s = 0 term
thereby resulting in the above expression for f�k(T ,Eγ ). Hence, (21) is to be interpreted as a
time-averaged Maxwellian distribution function (averaged over a period of oscillation of EM
field).

Proceeding further, after substitution of (19) into the total density fluctuation expression
we obtain

ρ(�r, t) = e2
∑
�q,�

ei�q·�r

ei�t
φ(�q,�) exp[−iγ0qx cos(ωt)]

∑
m

imJm(qxγ0) e−imωt�(�q,� + mω)

(23)

where

�(�q,�) =
∑

�k

f�k+�q − f�k
ε�k+�q − ε�k − � − iη

(24)

is the usual electron polarizability.
After decomposing the time-dependent factor exp[−iγ0qx cos(ωt)] into successive

harmonics, which is obtained by substituting

exp[−iγ0qx cos(ωt)] =
∑
m′

i−m′
Jm′(qxγ0) eim′ωt , (25)

the electron density fluctuation can be written as

ρ(�r, t) = −e2
∑
�q,�

ei�q·�r

ei�t
φ(�q,�)

∑
m,m′

im−m′
Jm(qxγ0)Jm′(qxγ0) e−i(m−m′)ωt�(�q,� + mω).

(26)

Proceeding further from Poisson equation, the induced potential can be calculated from
the density fluctuation,

∇2φind(�r, t) = −4πρ(�r, t). (27)
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Performing the Fourier expansion for the induced potential we obtain

∇2φind(�r, t) = −
∑
�q,�

q2 ei�q·�r ei�tφind(�q,�) + c.c.. (28)

Combining now (26)–(28), we obtain the Fourier component of the induced potential

φind(�q,�) = 4πe2

q2
φ(�q,�)

∑
m

J 2
m(qxγ0)�(�q,� + mω). (29)

In order to obtain (29) we assumed usual radiation frequencies such that ωt > 1 (here t is
to be interpreted as the time of flight of the electron in the plasma under the radiation electric
field before colliding with any scattering center), in this case the factor exp[−i

(
m − m′)ωt]

oscillates very rapidly and in a period of the radiation field it is vanishingly small. Therefore,
the terms for which m �= m′ do not contribute to the induced potential. Hence, (29) is the
result for the induced potential, at a steady state, after averaging t in ρ(�r, t) over a period of
the radiation field. It tells us that in the presence of the radiation field the potential becomes
anisotropic through the Bessel function.

The local potential is given by the sum of the external and the induced potentials, i.e.

φ(�q,�) = φext(�q,�) + φind(�q,�), (30)

with the dielectric function given by

φ(�q,�) = φext(�q,�)/ε(�q,�), (31)

which leads to

ε(�q,�) = 1 − 4πe2

q2

∑
m

J 2
m(qxγ0)

∑
�k

f�k+�q − f�k
ε�k+�q − ε�k − � − mω − iη

. (32)

It follows immediately from (32) that in the absence of the radiation field, γ0 = 0 and
J 2

m(γ0qx) = δ0,m so that

ε(�q,�) = 1 − 4πe2

q2

∑
�k

f�k+�q − f�k
ε�k+�q − ε�k − � − iη

, (33)

which is the well-known result for the field-free dielectric function. The dielectric constant
derived above is valid for any strength of the radiation field at any electron densities and
temperature, provided that the probing potential φext(�r, t) (and the resulting local potential) is
weak.

The modes of the collective excitation of the system are determined by the solution of

ε(�q,�) = 0. (34)

However, the correct units in terms of h̄, c, V must be recovered first. By writing

f�k = f̃ �k exp
(−Eγ /kBT

)
(35)

where

f̃ �k = n0

(
h̄2

2πmekBT

)3/2

exp

(
− h̄2�k2

2mekBT

)
(36)

and taking the classical limit (h̄ → 0) such that me�v = h̄�k, equation (32) becomes

ε(�q,�) = 1 − 4πe2

meq2

∑
m

J 2
m(qxγ0)

∫
d3v

�q · ∂f̃

∂�v
�v · �q − � − mω − iη

exp

(
− Eγ

kBT

)
. (37)
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Table 1. Parameters for some typical plasmas.

Type n0 (m−3) kBT (J) �pe (s−1)

Gas discharge 1020 1.6 × 10−19 6 × 1011

Hot plasma 1020 1.6 × 10−17 6 × 1011

Hot and diffuse 1018 1.6 × 10−17 6 × 1010

Warm plasma 1020 1.6 × 10−18 6 × 1011

Since we are mainly concerned with the effects of the EM field amplitude on the dielectric
function which comes into it via the Bessel function, we make m = 0 in (37). Also, we consider
the fact that the phase velocity of the wave is much greater than the thermal velocities and
expand (� − �v · �q)

−2 which appears after integration by parts of (37). Thus, after finding the
principal value of the integral, we obtain

ε(�q,�) ∼= 1 − �2
peJ

2
0 (qxγ0)

�2

[
1 +

3〈(�q · �v)2〉
�2

+
5〈(�q · �v)4〉

�4

]
exp

(
− Eγ

kBT

)
. (38)

By making q small in (38) and using (34) the modes of the collective excitation of the
system are simply given by

��q,λ
∼= �pe exp

(
− Eγ

2kBT

) [
J 2

0 (qxγ0)
]1/2

. (39)

3. Results and discussion

Equation (39) is the main result we want to discuss. At small wave vectors the plasma
energy is mainly determined by the electrons themselves. As q increases the terms for which
m �= 0 start to contribute and (38) is no longer valid because the second and third terms in
the brackets contribute to a much complicated solution for the collective excitation frequency.
We note that for the field-amplitude case (m = 0) the collective excitation frequency given by
equation (39) is strongly dependent upon the frequency and amplitude through the parameters
Eγ = e2E2/4meω

2 and γ0 = eE/meω
2. Also, the effect of the electron-radiation field

coupling is to lower the plasmon frequency by means of the factor exp(−Eγ /2kBT ).
Proceeding further, in order to analyze the behavior of (39), we performed some numerical

computations of collective mode frequencies for some typical plasmas, namely hot and diffuse
plasma, gas discharges, warm plasma and hot plasma (see table 1). Since the external field
confers a preferred direction (the x-axis) we postulated in all numerical computations that the
plasmons are propagating along the x-direction (qx = q and qz = qy = 0). Firstly, we applied
(39) for a gas discharge plasma and for a hot plasma. We assumed EM radiation frequencies
ranging from ω = 3 × 107 s−1 to ω = �pe, the plasma frequency. The low frequencies
were included in the numerical simulations in order to seek attention to the fact that for field
frequencies below the plasma frequency the electromagnetic wave in the plasma is strongly
attenuated, even taking into account the small skin depth (δ) effect in such dense plasmas
which is of the order of 0.01 mm.

Figure 1 shows the dispersion of the plasma mode frequency as a function of q for
the above-considered plasmas. We have used E = 10 V m−1 and observed that there is no
difference in such dispersions as expected. Secondly, we have applied (39) for a Gas Discharge
and obtained the curves depicted in figure 2 which shows the plasma mode frequency as a
function of EM frequency (ω) and intensity (E). We can see from this three-dimensional
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Figure 1. Dispersion of collective mode for a gas discharge plasma (solid line) and a hot plasma
(dashed line) as a function of wavenumber, q, for an electric field amplitude E = 10 V m−1. The
EM frequency is ω = 2 × 109 s−1.

Figure 2. Collective mode frequency as a function of radiation frequency, ω, and radiation-field
amplitude, E, for a gas discharge plasma.

plot that the effect of wave attenuation for low radiation frequency values (below the plasma
frequency) is strongly reflecting the effect on the drastic attenuation of the collective modes
as expected. For a hot plasma the collective mode frequency has the same behavior as that
shown in figure 2, here the phase velocity of the excitations v ≈ vth (thermal velocity). Also,
we observe from figure 2 that the collective mode frequencies decrease for high radiation-field
amplitudes. Thirdly, we have applied (39) for a gas discharge for three EM frequencies and
plotted figure 3 from the results. In this figure, we observe that the plasma mode frequency has
the same behavior as that observed in figure 2. Figure 4 shows the plasma mode frequency,
(39), for a hot plasma, a gas discharge plasma and a warm plasma as a function of wavenumber
(as appearing in the argument of the Bessel function).
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Figure 3. Collective mode frequency as a function of electric field amplitude, E, for a gas discharge
for three EM frequencies, ω: 1 ×1010 s−1 (solid line), 2 ×1010 s−1 (dashed line) and 3×1010 s−1

(dotted line).

Figure 4. Collective mode frequency, (39), as a function of wavenumber (argument of the Bessel
function) for a warm plasma (dot-dashed line), a hot plasma (dashed line) and a gas discharge
plasma (solid line) for an EM frequency of ω = 3 × 109 s−1.

Let us now associate our above finding with the high-frequency electrical conductivity in
our nonmagnetized plasma. This is accomplished by taking account of the standard relation
between the plasma conductivity and dielectric response functions [20], namely

ε = 1 +
4π

i�
σ. (40)

Hence, by making use of result (38) for small q and (40) we obtain the reactive plasma
electrical conductivity (imaginary part) under a radiation field

σreac(�) = �2
pe exp

(− Eγ

kBT

)
J 2

0 (qxγ0)

4π�
. (41)

It then follows that the reduction of plasmon frequency under a radiation field through
(39) can also be understood as the suppression of the reactive plasma electrical conductivity
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under a radiation field. That is, by increasing the field parameter Eγ in (41) which involves
the field amplitude and frequency, respectively, σreac decreases because of the exponential
factor thereby making the plasma electrons less mobile. On the other hand, since the field-
amplitude process is proportional to the square of the Bessel function J0(γ0qx) we see that
for a given qx (q is small but not zero) and a given γ , the Bessel function of zeroth order
oscillates with the field amplitude and as a consequence we have oscillations of the reactive
conductivity. Therefore, the effect of the Bessel function factor in (41) is to modulate the
reactive conductivity as a function of radiation-field amplitude. We then have two effects,
namely the suppression of reactive plasma conductivity as the field amplitude increases and
its modulation through the Bessel function.

At this stage it is worthwhile to mention the effect of the radiation field on classical Landau
damping. In the absence of collisions, i.e., for a collisionless plasma for which �pet  1
(t is the electron relaxation time), the plasma waves are Landau damped. However, in the
presence of a radiation field, the external field provides a drift velocity to the electrons such
that whenever the drift velocity is greater than the phase velocity of the plasma wave, there
is a transference of energy from the electrons to the plasma waves at the expense of EM field
and the plasmon population grows. If this growth rate in the radiation field becomes greater
than the Landau damping coefficient we have plasma wave amplification.

In order to test the predictions put forward in the current paper, we suggest a numerical
simulation. Since the formalism used here is similar to solid state plasmas, we propose a
simulation analogous to that of [21] where the dynamics of the degenerate electron gas of a
thin Cu metal film subject to an intense and ultra-short UV electromagnetic pulse in resonance
with the electron plasma frequency of the system was investigated. In such a numerical
simulation however the electron distribution function of the thin Cu metal film has to be
considered a non degenerate electron distribution to fit our above results using the Maxwellian
distribution function for electrons. The results of the simulation in [21] show that a collective
excitation of electrons by resonance absorption leads to the formation of plasma waves in the
metal film. The same behavior is expected for the simulation by using the present Maxwellian
distribution function for electrons since the characteristic energy of plasma electrons—in our
particular case—is independent of electron distribution function.

Moreover, the reduction of the plasmon frequency under a radiation field can be associated
with the suppression of the plasma electrical conductivity under a radiation field. Even though
quantum effects are negligible in our plasma system the results put forward above are consistent
with the experimental observation of a suppressed conductivity in a quasi-two-dimensional
electron gas under a THz radiation field [22–24] where quantum effects are important.

4. Conclusion

In the present paper, we made a theoretical study of the dielectric function of a radiation-
driven electron–gas plasma. In order to find the time-dependent wavefunction for electrons
under the radiation field we made use of unitary transformations of quantum mechanics. The
charge fluctuation of the system was then evaluated by using the time-dependent perturbation
technique in order to obtain an expression for a local potential from which an expression for
the dielectric function was derived. And then the classical limit was taken in order to apply the
results to macroscopic—i.e. classical—plasmas, as successfully accomplished in a number of
cases [11, 13, 14]. The spectrum of the collective excitation was then calculated and shows
strong dependence upon the intensity and frequency of radiation field. As a consequence of
this effect one observes the suppression of the reactive conductivity.
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